New Generating Function Relations for the q-Generalized Cesàro Polynomials
نویسندگان
چکیده
منابع مشابه
Bilinear generating relations for a family of q-polynomials and generalized basic hypergeometric functions
In this paper, we derive a bilinear q-generating function involving basic analogue of Fox’s H-function and a general class of q-hypergeometric polynomials. Applications of the main results are also illustrated.
متن کاملA New Generating Function of (q-) Bernstein-Type Polynomials and Their Interpolation Function
and Applied Analysis 3 Observe that the Bernstein polynomial of degree n, Bnf , uses only the sampled values of f at tnj j/n, j 0, 1, . . . , n. For j 0, 1, . . . , n, βj,n x ≡ n 1 Bj,n x , 0 ≤ x ≤ 1, 2.5 is the density function of beta distribution beta j 1, n 1 − j . Let yn x be a binomial b n, x random variable. Then E { yn x } nt, var { yn x } E { yn x − nx }2 nx 1 − x , Bnf x E [ f { yn x ...
متن کاملCongruences for Generalized q-Bernoulli Polynomials
In this paper, we give some further properties of p-adic q-L-function of two variables, which is recently constructed by Kim 2005 and Cenkci 2006 . One of the applications of these properties yields general classes of congruences for generalized q-Bernoulli polynomials, which are qextensions of the classes for generalized Bernoulli numbers and polynomials given by Fox 2000 , Gunaratne 1995 , an...
متن کاملNew bounds for the generalized Marcum Q-function
In this paper, we study the generalized Marcum -function where and . Our aim is to extend the results of Corazza and Ferrari (IEEE Trans. Inf. Theory, vol. 48, pp. 3003–3008, 2002) to the generalized Marcum -function in order to deduce some new tight lower and upper bounds. The key tools in our proofs are some monotonicity properties of certain functions involving the modified Bessel function o...
متن کاملStructure relations for the bivariate big q-Jacobi polynomials
The bivariate big q-Jacobi polynomials are defined by [3] Pn,k(x, y; a, b, c, d; q) := Pn−k(y; a, bcq , dq; q) y(dq/y; q)k Pk (x/y; c, b, d/y; q) (n ≥ 0; k = 0, 1, . . . , n), where q ∈ (0, 1), 0 < aq, bq, cq < 1, d < 0, and Pm(t;α, β, γ; q) are univariate big q-Jacobi polynomials, Pm(t;α, β, γ; q) := 3φ2 ( q−m, αβq, t αq, γq ∣∣∣∣ q; q) (m ≥ 0) (see, e.g., [1, Section 7.3]). We give structure r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Function Spaces
سال: 2019
ISSN: 2314-8896,2314-8888
DOI: 10.1155/2019/3829620